Vector Packet Encapsulation: The Case for a Scalable IPsec
Encryption Protocol

Michael Pfeiffer

Technische Universitat Ilmenau

Franz Girlich*
Technische Universitat Ilmenau

ABSTRACT

The IPsec protocol family, although not always undisputed, has
shown to be extremely reliable over the last two decades. However,
given the fact that communication networks evolved tremendously
since ESP was standardized, this paper proposes changes to the
security protocol to accommodate for the needs of modern wide
area and data center networks. In particular it addresses optimiza-
tions for high-speed software implementations as well as use cases
in data center networks. The evaluation shows that rather small
yet targeted changes are sufficient to allow for more flexible and
scalable implementations.

CCS CONCEPTS

« Security and privacy — Security protocols; - Networks —
Network protocols; « Hardware — Networking hardware.

KEYWORDS

Virtual Private Networks, IPsec, Performance, Multicast, QoS

ACM Reference Format:

Michael Pfeiffer, Michael Rossberg, Franz Girlich, and Guenter Schaefer.
2020. Vector Packet Encapsulation: The Case for a Scalable IPsec Encryption
Protocol. In The 15th International Conference on Availability, Reliability and
Security (ARES 2020), August 25-28, 2020, Virtual Event, Ireland. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3407023.3407060

1 INTRODUCTION

The IPsec protocol suite [10], in particular the Internet Key Ex-
change Protocol Version 2 (IKEv2) [6] and the Encapsulating Se-
curity Payload (ESP) [9], forms one of the prevalent solutions for
providing confidentiality, integrity, and authenticity for commu-
nication across untrusted networks. Despite repeated criticism, in
the course of two decades IPsec has proven reliable and secure
in theory and practice [? ?]. Nonetheless, one can isolate three
developments that strain its current architecture.

*firstname.lastname@tu-ilmenau.de

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8833-7/20/08...$15.00
https://doi.org/10.1145/3407023.3407060

Michael Rossberg®

Technische Universitat Ilmenau

Guenter Schaefer”
Technische Universitat Ilmenau

Hardware Parallelism. ESP was initially standardized the same
year Fast Ethernet appeared. Today, networking hardware provid-
ing 1000 times higher throughput is affordable. On a first glance,
this should only affect protocol handling marginally, i.e. requiring
a larger space of sequence numbers [7], but modern CPUs scale by
increasing parallelism rather than frequency. Thus, software that
handles packets at high speeds must be built in a fundamentally
different way, which in turn affects protocols.

Modern Processor & NIC Features. Modern processors not only
have significantly more cores, but also use vector instructions, e.g.
Intel’s Advanced Vector Extensions (AVX), to process much more
data in parallel. However, the potential speedup requires a stricter
memory alignment and emphasizes effective cache management.
Furthermore, today’s Network Interface Controllers (NICs) offer
the possibility to spread packets over multiple small buffers to allow
for large jumbo frames yet be cache efficient. Both developments
must be supported at protocol level.

Evolving use cases. Due to their growing scale, many data centers
shift from switched to routed networks. At the same time, there is
a trend towards encrypting intra-data center traffic, often dubbed
zero trust. This leads to layer 3 Virtual Private Networks (VPNs)
being applied in scenarios with a controlled layer 2 network in-
frastructure. Often, these layer 3 networks are then in turn used to
transport encapsulated layer 2 frames, e.g. in Virtual eXtensible Lo-
cal Area Network (VXLAN) packets [?]. These developments lead
to the necessity to secure broad- and multicast, jumbo frames as
well as Quality of Service (QoS) tagged traffic. Furthermore, servers
in data centers can be multihomed, and select uplinks depending
on load. All three situations are generally not encountered when
running VPNs over the Internet.

To address these challenges, we propose Vector Packet Encapsu-
lation (VPE), a revised security protocol especially suited for the
scenarios sketched above. Following good practice in designing
security systems, our work is not intended to lead to a revolution-
ary approach, but a careful evolution of ESP, much in the spirit
of IKEv2. Nonetheless, it also provides a unique chance to remove
some historical artifacts, e.g. cipher modes that do not provide
Authenticated Encryption with Associated Data (AEAD), and to
reconsider certain parts, e.g. the transport mode.

In detail, our contributions are the following:

(1) A detailed analysis of the shortcomings of ESP with regard
to the points laid out above,

https://doi.org/10.1145/3407023.3407060
https://doi.org/10.1145/3407023.3407060

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

(2) a proposal for a modification of the ESP packet layout that
allows faster software processing and facilitates multicast as
well as QoS, and

(3) a comparison of resulting performance figures of both ESP
and our packet header using a modern encryption data plane
developed towards 100 Gbit/s networks.

The remainder of this paper is organized as follows: Section 2
proposes requirements for a modern packet security format. Sec-
tion 3 discusses the deficiencies of current ESP in detail. Section 4
explains how VPE resolves those issues. Section 5 discusses the pro-
tocol and provides a quantitative evaluation based on a prototypical
implementation. Afterwards, Section 6 discusses related research.
Section 7 concludes the paper and points out directions for future
research.

2 OBJECTIVES

The IPsec protocol suite defines two data plane security protocols,
the aforementioned ESP and Authentication Header (AH) [8]. The
latter provides authenticity, integrity, and replay protection, but
no confidentiality. It is less commonly used and sometimes out-
right discouraged [?]. Although some of the findings presented in
this paper might be transferable to AH, we refrain from a further
discussion for reasons of space.

Both ESP and AH can process packets in tunnel and transport
mode. The former encapsulates entire IP packets, whereas the latter
adds a security header after the original IP header. Although tunnel
mode implies an overhead due to the duplicated headers, it provides
traffic flow confidentiality and is more flexible than transport mode
by supporting Security Associations (SAs) that terminate in a gate-
way as well as Network Address Translation Traversal (NAT-T).
Based on these considerations and in agreement with [?], we will
focus on tunnel mode in the remainder of this publication.

Combining these considerations with the points discussed in
Section 1, a modern packet security header should be based on ESP
in tunnel mode, but

e enable parallel processing,

e allow implementations to utilize modern CPU and NIC tech-
nologies such as vector instructions and split buffers,

e back evolving use cases by supporting multicast and QoS,
and should

o be built with modern AEAD ciphers in mind.

3 SHORTCOMINGS OF ESP

In the following, we will discuss the areas where ESP falls short of
these objectives.

3.1 Hardware Parallelism

Sustaining data rates of 100 Gbit/s relies heavily on the ability to
parallelize packet processing. A rough estimation is sufficient to
illustrate this fact: A single-core 4 GHz CPU processing minimum-
sized Ethernet frames at wire speed from a 100 Gbit/s link could
spend less than 27 clock cycles per packet, hardly enough for pars-
ing a simple IP header. Therefore, modern NICs expose multiple
independent receive and send queues for each network port. Each
CPU core can thereby process network packets by using a different
pair of queues, waiving the need to synchronize their accesses. Flow

Michael Pfeiffer, Michael Rossberg, Franz Girlich, and Guenter Schaefer

steering or Receive-Side Scaling (RSS) is employed to direct packets
of a single flow, e.g. with the same addresses and port numbers,
to the same queue. This avoids packet reordering, which disturbs
higher-layer congestion control, e.g. in Transmission Control Pro-
tocol (TCP).

In the case of ingress ESP traffic, TCP and UDP headers are
encrypted. Therefore, the NICs can only steer entire SAs to specific
queues, identified by their addresses and Security Parameter Indices
(SPIs). This is not an issue if there are many SAs with light traffic,
e.g. a gateway serving hundreds of road warrior clients. But to
support high-traffic SAs, e.g. those that couple two data centers,
operators are forced to choose the lesser of two evils: They can
either disable flow steering or create multiple SAs between the two
gateways.

Disabling flow steering is unsuitable, even if one would accept
the resulting packet reordering. This is due to the fact that although
multiple cores could process packets simultaneously, their replay
windows would need to be synchronized. Locking the respective
data structures completely causes prohibitive performance issues,
but even atomic instructions provided by the hardware can perform
the required operations only at rates that are by magnitudes lower
than the required packet rates.

Creating multiple SAs pushes data plane properties such as the
number of processor cores into the operational domain. This entails
a higher risk of misconfiguration, a larger overhead due to the
multiple IKE exchanges, and a more complicated monitoring, e.g.
for dead peer detection. Furthermore, there are issues with the
scalability as the required SAs would actually form a Cartesian
product of CPU cores, senders, and QoS classes, as discussed in
more detail below.

While hardware accelerators, i.e. Field-Programmable Gate Ar-
rays (FPGAs) or Application-Specific Integrated Circuits (ASICs),
may provide higher throughput, they cannot solve the problem
entirely. First, they also rely on increased parallelism to keep up
with growing network throughput [19], as chip frequencies do
not advance as fast as data rates. Second, they are not generally
applicable, e.g. in Network Function Virtualization (NFV) deploy-
ments, in setups that require independent review of cryptographic
implementations, or simply due to development or deployment
costs.

3.2 Modern Processor & NIC Features

Achieving high throughput and low latency in software packet
processing depends on CPU cache efficiency and proper data align-
ment. The latter heavily depends on the actual CPU architecture
and means that memory addresses should be a multiple of the byte-
length of the CPU registers. Current ESP requires the payload, i.e.
the encrypted part of the packet, to be aligned to 4 or 8 bytes for
IPv4 and IPv6 respectively. In contrast, the cryptographic exten-
sions provided by modern architectures operate on vector registers
of 16 (Intel SSE, ARM Neon) or 32 bytes (Intel AVX). However, by
adjusting the headroom, i.e. the offset of a received packet within its
memory buffer, it is possible to align the start of the encrypted data
to a 16- or 32-byte boundary. Still, ESP’s trailer, which contains the
ICV (see Fig. 1), may be unaligned regarding the needs of a specific
architecture. Furthermore, depending on packet size, prepending

Vector Packet Encapsulation: The Case for a Scalable IPsec Encryption Protocol

0123456 7 8 910111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Security Parameters Index (SPI) =

=

Sequence Number <
Initialization Vector
Encapsulated Packet

8]

g

=

£

<

E

Padding (0-3 bytes) Pad Length | Next Header

Integrity Check Value (ICV)

Figure 1: IP payload of an ESP tunnel mode packet with AES-
GCM as specified by the corresponding RFCs [9, 18].

an ESP header and appending a trailer at the same time, may cause
the use of two additional cache lines (instead of one), which may
also result in a performance penalty.

Even worse, many network cards place large packets, i.e. jumbo
frames, into multiple chained packet buffers. This can generally
not be avoided by making buffers large enough to even hold jumbo
frames, as then cache efficiency would decrease if large and small
frames are intermixed. But if chained buffered are used, the protocol
trailer may be split between two buffers. Its size depends on the
length of the ICV (negotiated during key exchange) and the flexible
padding in the encrypted part of the packet. Thus, this cannot be
fixed at the NIC level. To avoid this special case, software imple-
mentations generally just merge the buffers, which again leads to
decreased performance.

Chained packet buffers may also help when performing packet
fragmentation during ESP encapsulation, as new headers could sim-
ply be placed in extra buffers that are chained to parts of the original
one. However, also in this case the ESP trailer adds non-negligible
overhead, as parts of it also need to be encrypted — leading to non-
contiguous memory during encryption. These memory operations
are especially aching, as fast cryptographic offloads in modern CPUs
shift the focus of performance optimization from cryptographic
operations to the protocol handling itself.

3.3 Evolving Use Cases

While QoS and multicast support are mentioned in the IPsec stan-
dards [10], there are several issues with both functions, and the
deployment of IPsec in local networks makes the situation more
pressing. Applying QoS mechanisms to prioritize some traffic within
a single SA, e.g. by copying the QoS flags to the outer IP header, is
in its essence a form of intentional traffic reordering. After bursts
of higher-prioritized packets have advanced the replay window,

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

lower-prioritized traffic still in flight will be discarded by the re-
ceiver. Avoiding this situation at high data rates may require ex-
tremely large replay windows, which in turn contradicts with high
processing speeds due to cache inefficiency.

In effect, the problem is similar to the issue discussed in Sec-
tion 3.1. Again, it would be possible to establish multiple SAs be-
tween two devices, entailing the same disadvantages. Worse, if both
parallelism and QoS were to be supported, the number of required
SAs would increase multiplicatively.

In the case of multicast, problems are even more substantial, as
large multicast groups require shared keys among their members.
While there have been efforts to standardize group key derivation
with IKE (e.g. [20]), ESP is currently not a well-suited transport
protocol if multiple senders are involved. The most central issues
are:

e Replay protection does not work as it requires synchronized
sequence numbers if multiple senders are involved,

e extended sequence numbers only transport the lower 32
bit, hence joining group receivers would need to guess the
current higher part, and

o there are no mechanisms to avoid the reuse of Initialization
Vectors (IVs) built directly into ESP (while there may be in
related standards).

Note, that generating an SA per sender to allow for replay protec-
tion is not suited in general, as joining senders would cause the
installation of a new SA in all devices. This is considered a I affects
n scalability issue.

Apart from these points, many data centers have evolved layer 2
networks, which are no longer based on plain trees, but for example
fat-tree or Clos topologies. These topologies have the advantage
of being more robust in case of link or switch failures and less sus-
ceptible to being blocked by few elephant flows. However, packets
between fixed sources and destinations may be sent over different
paths, and often servers are even multi-homed; balancing traffic
over the uplinks. Thus, in these topologies packets may regularly
overtake, leading to situations like described for QoS.

3.4 Summary

To summarize, ESP falls short in the areas of parallel processing,
support of QoS and multicast. Its alighment and trailer are subopti-
mal for fast processing, especially in software. Some, but not all of
these shortcomings can be concealed at the cost of higher control
plane complexity or more expensive hardware. Nevertheless, we
argue that certain changes to ESP protocol are the cleaner, more
future-proof approach. They are presented in the following section.

4 PROPOSED CHANGES TO PROTOCOL
HEADER AND HANDLING

Resulting from the discussion in Sections 2 and 3, we propose VPE,
based on ESP in tunnel mode combined with a modern AEAD cipher.
For sake of simplicity, we presume AES-GCM is used [18], although
it can be easily substituted by others, e.g. ChaCha20/Poly1305 [15].
VPE shall be based on the established concepts of ESP and only de-
viate as little as it is required to address the shortcomings described
previously. In particular, the security requirements outlined by the
existing ESP protocol [10] must not be jeopardized. We further

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

assume a suitable key exchange that can signal VPE SAs is present,
e.g. IKEv2 with a suitably extended security protocol list [6].

The following subsections will discuss changes in processing se-
quence numbers, deriving IVs, and further reductions in complexity.
Section 4.4 concludes with the resulting packet layout.

4.1 Replay Windows and Sequence Numbers

The issues outlined in Section 3 regarding parallel processing, QoS,
and multicast replay protection can be remedied by the same tech-
nique: Turning the bijective mapping between SA and replay win-
dow into a 1:M relationship. That is, one or more unsynchronized
senders may assign sequence numbers to packets from multiple, in-
dependently running counters. An identification of the counter the
sequence number refers to is transmitted with each packet. Thus,
the sender does not only use the SPI to lookup the replay window
data structure, but instead a triple of (SPI, Sender ID, Window ID).
Their use differs slightly, depending on whether the SA is unicast
or multicast.

4.1.1 Unicast. In unicast SAs, the SPI alone suffices to identify
the device that generated a sequence number. The Sender ID is not
used. However, by assigning a unique Window ID to each processing
unit, e.g. the CPU core number, parallel processing can easily be
supported on the sender side. Note that as long as a receiving
processing unit can maintain multiple replay windows, this does
neither require the sender and receiver to have the same number of
processing units, nor do they need to coordinate tightly. Similarly,
QoS or the combination of QoS and parallelism can be supported.
In this case a mapping between Window ID and QoS semantics must
be present, e.g. by configuration. But again, there is no direct need
to coordinate this configuration with the receiver. Figure 2 provides
an overview of the resulting cardinality relationships.

4.1.2 Multicast. In multicast setups that use a shared group key
the SPI identifies a cryptographic context. Separate sequence coun-
ters and replay windows are instantiated for each pair of Sender ID
and Window ID. Parallelism and QoS can hence be supported analo-
gously. The addition of the Sender ID allows replay protection in
presence of multiple uncoordinated senders. To do so, the Sender ID
must uniquely identify a device sending with the SPI. As secure
multicast groups should not become too large for reasons of scal-
ability, we suggest to reserve 16 bit, which is also the maximum
value mentioned for IV partitioning in [11].

In practice, there are multiple ways to achieve the uniqueness
requirement, e.g. a central key server may assign them to devices
dynamically. It is also possible to distribute the Sender ID utilizing
certificates that are used during IKE. For a prototypic implementa-
tion, we used simply the serial number of the certificates. However,
this may require a dedicated Public Key Infrastructure (PKI) for
each VPN due to the small number space.

4.1.3 Receiver Side. Regarding parallel processing, one problem
remains at receiver side: All ingress encrypted packets with the
same combination of Sender ID and Window ID must be steered to
the same processing unit by the NIC to avoid costly rescheduling
or replay window synchronization (see Section 3.1). In particular
this ensures:

Michael Pfeiffer, Michael Rossberg, Franz Girlich, and Guenter Schaefer

Identification of...
Queue &
QoS class

Unicast SPI «1:1— SenderID «1:n— Window ID

Key Device

Multicast SPI «1:n— SenderID «1:n— Window ID

Figure 2: Cardinality relationships of SPIs, Sender and Win-
dow IDs in VPE.

o All packets that use the same replay window are handled on
the same receiver CPU, thus replay windows may be tracked
using local memory.

e Asencrypting gateways usually utilize RSS to spread ingress
unencrypted traffic over CPUs, packets of the same flow
are also handled by one CPU in the receiver. Thus, packet
reordering may be ruled out.

Technically, traffic steering could be achieved by using NICs
that implement VPE or those that offer so-called raw matches on
arbitrary byte positions. However, we may also change the packet
structure a little to achieve the same result for existing NICs: By
placing Sender ID and Window ID at the same place in the packet
header as the SPI in the original ESP, we can simply utilize RSS
(or deterministic flow steering rules) on the SPI field. Note that
there is no need to steer VPE’s SPIs to specific cores, i.e. there is no
functional degradation.

From a security point of view this traffic steering may or may
not introduce a certain trust in the NIC depending on the imple-
mentation. If traffic steering was broken, replayed packets could be
steered to different CPUs, which would in turn not recognize the
packets being replayed. However, this attack vector may be fore-
closed, if receiving threads simply check that they are responsible
for a certain combination of Sender ID and Window ID.

4.1.4 Transmission Format. Finally, [9] specifies both standard and
Extended Sequence Numbers (ESNs), with lengths of 32 and 64 bit,
respectively. ESNs are required at today’s network speeds to avoid
immoderate rekeying and therefore already standardized to be
used by default [9]. However, only the lower 32bit are actually
transmitted in each packet. The higher-order bits are kept in the
state of sender and receiver. This not only requires reconstructing
higher-order values for each packet at the receiver, but is also not
feasible for group-key multicast. Members joining a group late may
simply be unaware of the higher bits currently in use, and it is
not always possible for a central key server to track them either.
We hence suggest to transmit the entire 64 bit sequence number in
every packet.

4.2 Initialization Vectors

The security of many cipher modes, including Galois/Counter Mode
(GCM), depends on the uniqueness of the IVs. The current specifi-
cation for IPsec with AES-GCM [18] requires a number unique to
each packet, e.g. a counter, combined with a salt that is unique to
each SA and originates from the key exchange.

We propose deriving the IV from the replay sequence number
instead, removing the need to maintain a separate counter. This

Vector Packet Encapsulation: The Case for a Scalable IPsec Encryption Protocol

has been suggested previously for IPsec [14] and a comparable
technique is used for MACsec [4, p. 58]. Of course, the Window ID
and Sender ID must also be included into the IV, as their very
purpose was to allow sequence numbers without synchronization.

The inclusion of the Sender ID would not be necessary in unicast
connections, as different senders will negotiate different keys. How-
ever, including it unconditionally removes a source for potential
implementation errors. The salt provides no security value, as IVs
must neither be secret nor chosen at random and can be dropped.

4.3 Reducing Complexity & Providing
Alignment

The measures discussed in the previous section already reduce
the complexity of header processing significantly. For example,
it is possible to read the IV directly from the packet, there is no
need to reconstruct it. Furthermore, there is no need for Additional
Authenticated Data (AAD) as all fields of the header are either
used to lookup key material, are part of the IV or the ICV. Hence,
attackers may not modify them without causing the authentication
to fail.

To further reduce complexity in packet handling and to address
the issues discussed in Section 3.2, we suggest removing ESP’s
trailer altogether. First, the Next Header field can be omitted. It
does not carry any useful information in tunnel mode, as the en-
capsulated data will always be an IP datagram. This is even true in
the case of IPv6 packets tunneled over IPv4 networks, or vice versa,
as in this case the protocol version can be safely inferred from the
packet’s first nibble.

According to its specification [9], the explicit padding fulfills
two functions: Inflating the plaintext to the cipher’s block size, and
aligning the trailing ICV to a 4-byte boundary. The former is not
necessary for modern AEAD modes of operation, and the second
does not allow significant acceleration anymore, as modern hard-
ware would require alignment to a significantly higher boundary
(see Section 3.2). IPsec requires the padding to be checked at the
receiver side, but this is actually just a precaution and not a real
security mechanism. Hence, the padding and the padding length
field can be removed.

Note that the transmission of an explicit padding length is not
required in tunnel mode anyway, as both IPv4 and IPv6 headers
contain a length field that allows discerning the actual payload
from padding bytes. Interestingly, padding to provide Traffic Flow
Confidentiality (TFC) is specified exactly this way in ESP [9], and
therefore remains possible with the proposed format modification.

As the padding and Next Header fields have been removed, only
the ICV would remain in the packets trailer. However, there is no
technical reason for a trailing ICV. In contrast, as described by
Section 3.2, moving the ICV to the header may prevent unaligned
ICV fields (in terms of current and future vector instructions) as
well as issues with multi-segment buffers and caching.

The earlier is due to the way NICs place received packets in mem-
ory: They do not allocate buffers of the same size as the received
packets dynamically, but rather place packets into preallocated
buffers at a configurable offset. By placing the ICV in the packet
header, software may set this offset to a CPU-specific value that
aligns the ICV on the required boundary.

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

In case a single preallocated buffer is too small, NICs may spread
packets over multiple segment buffers. Placing the ICV in the header
ensures that it is not placed on a segment boundary, avoiding checks
and potential reassembly costs.

Furthermore, appending and prepending a packet at the same
time complicates IP packet fragmentation. Without going into de-
tails (for reasons of space), this is due to the fact, that the operations
may not be performed in-place, as appending a trailer would over-
write the data of the next fragments.

4.4 Resulting Packet Layout

The packet header resulting from the preceding discussion is shown
in Fig. 3. Sender ID, Window ID, and Sequence Number are placed at
its beginning. The position of the IDs equals that of the SPI on the
ESP header (see Fig. 1), allowing the reuse of existing hardware RSS
(see Section 4.1). Furthermore, a 12-byte read operation at the be-
ginning of the packet efficiently returns a 96-bit IV (see Section 4.2).
Unlike ESP’s sequence number, the three fields are not used as
AAD. Still, their manipulation would cause an ICV mismatch and a
subsequent rejection of the packet.

01 2 3 45 6 7 8 910111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Sender ID Window ID >

&

=]

Sequence Number %

SPI

Integrity Check Value
Encapsulated Packet

g

=}

<3}

£

£

Z

Figure 3: The proposed packet header.

The SPI is located in the next four header bytes. It does not
need to be authenticated, as a manipulation would either route
the packet to a cryptographic context with different key material
or an invalid one. Both result in the rejection of the packet. The
IDs, SPI and Sequence Number are transmitted in little-endian
format, saving byte-order conversions on the x86 and AArch64
architectures dominating current hardware. The following ICV is
aligned on a 16-byte boundary respective to the beginning of the
header. The remainder of the datagram contains the ciphertext of
the encapsulated packet, encrypted and authenticated by the AEAD
algorithm.

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

5 EVALUATION

The security protocol described in Section 4 must persist against
the requirements laid out in Section 2.

5.1 Security Discussion

The security guarantees are straightforward to discuss, as on a high
level, the encapsulation and protection remains the same, i.e. in both
classic ESP and VPE the tunneled packet is completely encrypted
and authenticated. The particularly complex key exchange has not
been touched. The choice of algorithms and cipher modes follows
state-of-the-art recommendations [16, 21]. Although current AEAD
modes do not require block-size padding, VPE is future-proof as it
is still possible to insert arbitrary padding (see Section 4.3), in case
a future cipher mode reintroduces this requirement. For the replay
protection, the NICs must either be trusted to direct traffic with
the same sender and window IDs to the same core, or an additional
software check verifies the steering (see Section 4.1).
In certain cases, we argue that VPE improves the security:

e Replay protection for multicast becomes feasible in multi-
sender setups,

e inadvertent reuse of IVs becomes less likely due to their
explicit definition, and

e unauthenticated encryption as well as plain authentication
are not specified at all.

Furthermore, software implementations are less complex and the
need for AAD is removed.

Traffic Flow Confidentiality (TFC) requires a closer examination:
With regard to packet format, identical guarantees can be made, be-
cause no fields of encapsulated packets are exposed. But, similar to
IPsec, an observer could reason about sizes and timings of packets.
However, as with our approach there are multiple parallel flows
that can be discerned by their window IDs, more information is
leaked. The extent can be reduced by changing the RSS hash func-
tion periodically. If required, the same countermeasures as with
traditional ESP can be applied on top: Packet clocking combined
with fill packets (on a per processing unit basis) conceals all traffic
flow information.

QoS, multicast, and high-speed processing are supported by
our design. However, especially the impact of the latter requires a
thorough evaluation, which will be performed in the remainder of
this section.

5.2 Implementation & Experimental Setup

We implemented a highly parallelized, performance-optimized soft-
ware IPsec processor that supports both ESP and VPE. It is primarily
programmed in C++, but intrinsics and inline assembler have been
applied where necessary. Our implementation makes heavy use of
templating and function inlining to provide a modular architecture
without sacrificing performance to function calls or branching. For
the same reason, care was taken to perform no memory allocations
at runtime.

To access networking hardware, the Data Plane Development Kit
(DPDK) [?] is used, which allows our software to run in userspace,
bypassing the operating system’s kernel entirely. DPDK does not
use interrupts, but continuously polls for newly arrived packets,
avoiding expensive context switches. This approach is especially

Michael Pfeiffer, Michael Rossberg, Franz Girlich, and Guenter Schaefer

suited for setups where network traffic is a relevant performance
bottleneck, e.g. VPN gateways, cloud platforms. Please note that this
is simply an implementation decision and orthogonal to the security
protocol, i.e. VPE could be implemented in a classical operating
system kernel using interrupts just as well.

The actual cryptographic operations, i.e. AES encryption and
decryption, are delegated to the native instruction set found on
current CPUs. We resorted to the Intel Multi-Buffer Crypto for IPsec
Library [?] which provides a fast, vectorized implementation of
AES-GCM using AVX2 instructions.

The threading model of our VPE implementation is extremely
simple: Each thread is bound to a specific NIC queue pair, receives
a burst of up to 64 packets from its receive queue, performs the
entire processing for these packets, and pushes them into its trans-
mit queue. This push-through model has proven for other packet
processing applications as well, e.g. [1]. There is a configurable
number of those workers. By default, one half of them is used for
encryption and the other performs decryption.

For ESP, we implemented two different threading models. One
follows the same principle as the one for VPE, but therefore limits
the processing of a single SA to a single worker. The other one
tries to lift these limitations but is significantly more complex. As
shown in Fig. 4, it passes packets between threads via lockless ring
buffers. During encryption, the allocation of sequence numbers is
performed by a single thread, avoiding the need to synchronize. On
the receiving side, RSS is performed on the sequence number field
to ensure packets of a single SA are spread to all workers.

“Red” interface

“Black” interface

_____ f=————

IPsec en-/decryption

g 118 e

1 | SeqNo thread | RX queues |

! threads |
IEncrypﬁunl =

threads | f———— -
LaE== I

X queve | | Single |
= Sl | RSS thread |

1 Decryption |

| threads

Figure 4: Threading Model for Parallel IPsec Processing

The benchmarks were run on four servers, each equipped with
two 20-core Intel Broadwell CPUs (Xeon E5-2698 v4), 256 GiB RAM
and 100 GbE NICs (Mellanox ConnectX-5). The worker threads were
pinned to specific physical cores, i.e. without hyperthreading, while
respecting the Non-Uniform Memory Access (NUMA) topology.
The four servers were interconnected directly in a chain:

o The first server ran a traffic generator creating packets of
configurable sizes in multiple distinct User Datagram Proto-
col (UDP) flows at high rates and record the received data
rates.

e The second and third server were used as VPN gateways,
coupled via a single SA.

Vector Packet Encapsulation: The Case for a Scalable IPsec Encryption Protocol

o The fourth server executed a traffic reflector by simply swap-
ping the packets’ Ethernet and IP addresses and sending
them back.

Both generator and reflector where implemented by us, again using
DPDK. This setup allows testing higher data rates without addi-
tional hardware, as each packet is passed through the gateways
twice.

5.3 Non-Parallel Throughput

First of all, we performed an experiment to compare the perfor-
mance of our prototype against another state-of-the-art implemen-
tation. We chose the IPsec Security Gateway application [?] (ipsec-
secgw) provided with DPDK, which also uses native AES instruc-
tions and is highly optimized. Both implementations were config-
ured similarly with one encryption and one decryption thread per
security gateway. We performed measurements with both 64-byte
packets (Ethernet’s minimum frame size) to achieve high packet
rates and 1420-byte packets to obtain high data rates. The latter
allow for high data rates while leaving room for cryptographic
headers, i.e. no packet fragmentation is introduced.

We expected our ESP implementation to be at least as fast as the
state-of-the-art DPDK implementation. Furthermore, we expected
VPE to be slightly faster than ESP due to the optimized packet
layout. However, VPE’s major performance improvement is due to
its scalability, which is not examined in this experiment, therefore
the improvements were not anticipated to be major. Finally, packet
processors do not retain state in the sense that, e.g., simulations do,
thus we expected multiple runs to yield highly stable results with
hardly any deviation.

Figure 5 shows the mean of 60 one-second measurements for
each configuration. As anticipated, the confidence intervals were
too small for a sensible display. With small packets, ipsec-secgw
was able to sustain 1.91 Gbit/s. Our implementation surpassed this,
achieving 2.29 Gbit/s (+19.9 %) for ESP and 2.32 Gbit/s (+21.5 %)
for VPE. Large packets were processed significantly faster, with
18.09 Gbit/s by ipsec-secgw and 19.28 Gbit/s (+6.6 %) for ESP and
19.50 Gbit/s (+7.8 %) for VPE by our prototype.

64 Byte Packets 1420 Byte Packets

20.0 1
204 17.5 A
) 15.0 A
=
G 154 12.5 1
2 10.0 A
<
2 1.0 4
3 7.5
£
0.5 5.0
2.5
0.0 0.0
ESP ESP VPE ESP ESP VPE
(DPDK) (prototype) (DPDK) (prototype)

Figure 5: Single-Threaded Throughput

Note that numbers show the throughput received at the traffic
generator after the round-trip, i.e. they represent goodput including

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

neither the cryptographic nor the tunnel mode’s outer IP headers.
The data rates of the encrypted traffic, i.e. between both gateways,
are therefore higher. Due to the design of our experiment, the
numbers represent the unidirectional traffic processed by a single
thread, i.e. the entire VPN gateway processes twice the presented
rates. The PCI interconnect must handle four times the throughput,
as each packet is transported from the NIC to the CPU and back
again.
This experiment allows to draw several conclusions:

o Our prototype is faster than a comparable highly-optimized
implementation. This demonstrates that the performance
issues we experienced with ESP are not the result of an
insufficient implementation.

o The large difference between the data rates of small and
large packets backs our claim that with modern CPUs, packet
handling is much costlier than the cryptographic operations
themselves (see Section 3.2).

e Without parallel processing, the performance benefits of
VPE are already noticeable, but relatively small. We will in-
vestigate these optimizations more closely in Section 5.5.
Furthermore, please note that the experiment was not de-
signed to trigger the edge case described in Section 3.2 which
are especially costly for ESP, i.e. segmented jumbo frames
and fragmentation.

However, VPE’s primary design goal regarding throughput was to
allow scalability, which will be evaluated in the next experiment.

5.4 Scalability

In our second experiment, we compared the scalability of VPE with
the scalability of our multi-threaded ESP implementation. To the
best of our knowledge, there is no other publicly available ESP
implementation for modern hardware that can perform parallel
processing of a single SA while providing replay protection (see
Section 6). Therefore, we could not compare VPE to an independent
IPsec implementation as it was possible in the previous experiment.
We started our measurement of VPE with two processing threads,
one for encryption and one for decryption, i.e. essentially the same
setup as in Section 5.3. For ESP, we had to begin with three threads
due to the threading structure depicted in Fig. 4. Both implemen-
tations could then be scaled by successively assigning two more
threads to the processing until our hardware was exhausted. Again,
we measured the throughput of packets sized 64 and 1420 bytes in
60 one-second measurements each.

With VPE, there is no need to synchronize between threads.
Given that the traffic generator produces a sufficient amount of
flows, and RSS is working properly, we expected the throughput to
scale linearly with the number of threads. The case of ESP is more
complex. For low thread counts, we expect a lower throughput than
the one obtained in Section 5.3 due to the initial costs associated
with an application capable of multi-threading. Furthermore, due to
the complex threading structure, we cannot expect linear scaling.

The results are depicted in Fig. 6. VPE with small packets met
our expectations, starting with the same throughput as obtained in
the previous experiment and peaking at 29.8 Gbit/s using 38 cores.
The slope of the approximated linear function is less than 1. We
presume this is primarily due to the fact that utilizing more cores

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

80
800 00 0400400
> 0.0 0 ®

704

60 1)
@ i @ VPE (1420 B)
2 ESP (1420 B)
8] : M- VPE (64 B)
o
5 ... ESP (64 B)
5 401
< N
3 ¢
£ o T
: . o Bk

201 B

[] .4‘-.
..--."
™ e
107 IO T o & DU .
. e &t *
0 I"".A.....-'-' -
0 5 10 15 20 25 30 35 40

Number of Threads

Figure 6: Parallel Throughput of ESP and VPE for Packets
sized 64 and 1420 bytes.

leads to a lower maximum frequency as the processor approaches
its current, voltage, and thermal budget (Turbo Boost Technology
in Intel’s terms). VPE processing large packets shows a similar lin-
ear scaling behavior but appears to reach a threshold of 73 Gbit/s
using 10 threads. This appears to be the saturation point of the sys-
tem, although we can only speculate about the precise bottleneck,
which could be located in the NICs, the PCI bus or the QuickPath
Interconnect (QPI) between both CPU sockets. The same applies to
the slight throughput increase when using more than 18 threads.
More experimentation with upcoming hardware, e.g. Ultra Path
Interconnect (UPI) and PCle 4.0, may be able to provide further
insights.

ESP processing small packets did also scale with the number
of packets, but peaked at 9.7 Gbit/s. Significant throughput is lost
while passing packets between the worker threads, e.g. due to a
worse cache efficiency. Large packets did reach saturation at about
75 Gbit/s, but, for the same reason, required more than 20 threads
to do so. Furthermore, the scaling behavior of ESP is less consistent.
For large packets, on some low thread counts a throughput decrease
can be observed. This is caused by the threading model that is
required to provide replay protection (see Fig. 4), as e.g. adding
a distinct sequence numbering thread only pays off after more
encryption threads are added later on.

In summary, we can conclude that

o for small packets, i.e. when the throughput is CPU bound,
VPE does reach significantly higher throughput,

o for large packets, i.e. when the throughput is I/O bound, VPE
is substantially more efficient, and

e VPE’s scaling behavior is more predictable, allowing to use
a wider range of CPUs efficiently.

5.5 Hardware Architecture Optimizations

Finally, two experiments quantify the impact of the reorganization
and alignment of the packet header. To isolate the effects, only the
encryption of packets on a single server was measured, using the
same implementation that was used in the previous experiments.

Michael Pfeiffer, Michael Rossberg, Franz Girlich, and Guenter Schaefer

First, we measured the time required to encrypt 10 million IP
packets, averaged over 25 runs. In agreement with Section 5.3, we
expected the time required by VPE to be lower. Furthermore, we
anticipated an increase of the required time with larger packets,
simply because there is more data to encrypt.

Figure 7 shows the results. VPE shows the expected faster en-
cryption and consistent increase. In contrast, ESP’s times are lowest
at packet lengths of 1196, 1260, 1324 and 1388 bytes. These num-
bers are multiples of 64 bytes, the platform’s cache line size. We
assume that the two partial writes to the packet’s last cache line,
i.e. encrypting and appending the trailer, particularly impact the
caching hierarchy.

In Section 3.2, the ability to adjust the packet buffers’ headroom
has been discussed, because the AVX operations used to implement
the encryption are most efficient when the data is aligned to 32-
byte boundaries. Therefore, we would expect a local minimum of
the processing time, repeating with every headroom increase of
32 bytes. For ESP, we could not predict whether the insufficient
alignment or the appended trailer dominates the results.

The obtained results are depicted in Fig. 8. Contrary to our ex-
pectations, VPE exhibits a small local minimum repeating every 16
bytes, i.e. for 2, 18, 34, and 50 bytes. The small absolute improve-
ment could be caused by the fact that on modern platforms the
NIC’s Direct Memory Access (DMA) operations are sent to the L3
cache, i.e. not subject to the full memory latency and bandwidth
limitations. Furthermore, it appears that at least in the examined
situation, an alignment to 16 bytes is sufficient. A possible reason
could be the 16-byte SSE instructions, operating on the lower half
of the 32-byte AVX registers, leading to loads and stores aligned to
16 bytes being also highly optimized. The variations shown by both
protocols between 30 and 44 bytes can probably be attributed to
changes in the number of required cache line writes. Especially par-
tial cache line writes appear to harm VPE’s performance. However,
due the multiple superposed influences, clear attribution remains
difficult.

Despite those difficulties, we propose the following general con-
clusions:

o Cache line accesses appear to influence the throughput to a
greater extent than register alignment.

o Optimization on this level is highly dependent on the system
architecture and the exact nature of the traffic, e.g. UDP
encapsulation for Network Address Translation (NAT) shifts
the values.

o VPE allows considerably better optimization, as ESP’s trailer
causes costly cache line accesses to depend on the uncon-
trollable packet lengths.

6 RELATED WORK

Although to the best of our knowledge, VPE is the first effort to
modernize ESP at this scale, there have been other developments in
the field of VPN protocols. We will exclude non-encrypting VPNs
from the discussion, e.g. Multiprotocol Label Switching (MPLS)
and Virtual Private LAN Service (VPLS), as they are built with a
different attacker model in mind and provide a functional rather
than secure separation.

Vector Packet Encapsulation: The Case for a Scalable IPsec Encryption Protocol

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

124

- ESP
. VPE

=
=] o
L L

Time to encrypt 107 packets [s]
o

1164 1180 1196 1212 1228 1244 1260 1276 1292 1308 1324 1340 1356 1372 1388 1404 1420
Packet size [Byte]
Figure 7: Packet size vs. encryption time average over 25 runs.
10.25 i vbE
10 == == = === == ===]
075] T + T - S =ESP

Time to encrypt 107 packets [s]
©
~
(92

- . R T T e S S S S S i = =

I R 1

i B e T T e e S S

0 2 4 6 8 10 12 14 16

18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

Extra Headroom [Bytes]

Figure 8: Extra headroom vs. processing time

On the link layer, the most common protocol is MACsec (IEEE
802.1AE) [4]. Although MACsec provides confidentiality, integrity
and authenticity, it can only be used between directly connected de-
vices. The Ethernet Security Specification (ESS) lifts this limitation,
but link layer protocols still cannot be used in routed networks,
e.g. the Internet. Additionally, we propose the growing scale of
data center and campus networks will make routed networks more
common, making link layer protocols less relevant.

On or above the transport layer, there are multiple protocols,
including the ubiquitous Transport Layer Security (TLS) [17]. TLS
is used to secure traffic over wide-area networks and within data
centers alike but is focused on securing application-to-application
communication. Securing host-to-host or network-to-network traf-
fic can only be implemented by deploying TLS for all applications
and is difficult and error-prone to enforce. Transport layer VPNs
that tunnel Ethernet frames or IP packets, such as Secure Shell (SSH)
[22], OpenVPN [?] or Secure Socket Tunneling Protocol (SSTP)
[13] support neither parallelism nor group communication. Those
that use TCP as underlying protocol limit throughput even further,
as mechanisms such as congestion control of the tunneled TCP
connections interact with those of the underlying connection [3].

Recently, WireGuard [2] received a degree of attention, espe-
cially within the Linux kernel community. Both WireGuard and
VPE reason that VPNs should be built upon network layer, and
that the existing IPsec standard and implementations are rather

complex. But WireGuard takes a revolutionary instead of evolution-
ary approach, defining cryptographic algorithms and timer values
unchangeably into the protocol. We deem this approach unsuit-
able. Simply image the level of confidentiality IPsec could offer
today if the DES-CBC encryption, state-of-the-art at the time of
ESP’s original standardization [5], had been fixed into the standard.
Furthermore, the issues concerning parallel processing, QoS and
multicast described in this paper are not addressed at all.

Finally, to the best of our knowledge, no existing IPsec implemen-
tation provides an alternate, efficient way for parallelizing sequence
numbers and replay windows. Most limit single SAs to single cores,
e.g. Linux kernel, DPDK, or VPP, Others, such as [12], do not
elaborate on this central issue.

7 CONCLUSION & FUTURE WORK

This paper proposed a careful evolution of the ESP security proto-
col. To this end, objectives that allow a packet format to provide
security in today’s scenarios and data rates were formulated. The
shortcomings of ESP facing these objectives are evident in modern
networks, but most of them were not conceivable at the time ESP
was invented.

Based on these findings, VPE’s packet format has been developed.
Its central ideas are to address parallelism, QoS and multicast all

Uhttps://github.com/FDio/vpp/commit/f62a8c013c6e22c012b9d7df2ef463a6370cf1ce

https://github.com/FDio/vpp/commit/f62a8c013c6e22c012b9d7df2ef463a6370cf1ce

ARES 2020, August 25-28, 2020, Virtual Event, Ireland

at once by allowing multiple replay windows per SA. The implicit
derivation of IVs, a proper alignment of the header, the abandon-
ment of the trailer and an explicit transferal of ESNs further simplify
implementations. Arguably, each of these adjustments on their own
do not justify breaking backwards compatibility with existing im-
plementations. However, in combination they provide a unique
chance enabling IPsec to continue providing reliable security.

Further research may answer the following questions in order
to open more scenarios for VPE:

e How does VPE behave on CPUs from different generations,
vendors or architectures? This could clarify some of the
questions remaining from Section 5.5.

e How can VPE be implemented efficiently in hardware? While
we believe our results show that hardware accelerators are
not necessary to achieve high performance, they may be use-
ful for energy-constrained devices. The parallel architecture
should be well suited for hardware implementation, but we
have not conducted further examination.

e How can the transport mode be integrated into VPE? This
would require to transmit Next Header information in the
VPE header without impacting performance.

ACKNOWLEDGMENTS

The authors would like to thank secunet Security Networks for
funding this research.

REFERENCES

[1] Tom Barbette, Cyril Soldani, and Laurent Mathy. 2015. Fast Userspace Packet
Processing. In ACM/IEEE Symposium on Architectures for Networking and Com-
munications Systems (ANCS). 5-16. https://doi.org/10.1109/ANCS.2015.7110116

[2] Jason A. Donenfeld. 2017. WireGuard: Next Generation Kernel Network

Tunnel. In Network and Distributed System Security Symposium. https:

//www.ndss-symposium.org/wp-content/uploads/2017/09/ndss2017_04A-

3_Donenfeld_paper.pdf

Osamu Honda, Hiroyuki Ohsaki, Makoto Imase, Mika Ishizuka, and Junichi

Murayama. 2005. Understanding TCP over TCP: Effects of TCP Tunneling on

End-to-End Throughput and Latency. In Performance, Quality of Service, and

Control of Next-Generation Communication and Sensor Networks III, Mohammed

Atiquzzaman and Sergey L. Balandin (Eds.). https://doi.org/10.1117/12.630496

=

=
=

—
o

(13

(14

[15

[16

=
]

(18

[19

[20]

[21

[22

Michael Pfeiffer, Michael Rossberg, Franz Girlich, and Guenter Schaefer

IEEE. 2018. Media Access Control (MAC) Security. Standard 802.1AE-2018. https:
//doi.org/10.1109/IEEESTD.2018.8585421

Phil Karn, Perry Metzger, and William Allen Simpson. 1995. The ESP DES-CBC
Transform. RFC 1829. https://doi.org/10.17487/rfc1829

Charlie Kaufman, Paul Hoffman, Yoav Nir, Pasi Eronen, and Tero Kivinen. 2014.
Internet Key Exchange Protocol Version 2 (IKEv2). RFC 7296. https://doi.org/10.
17487/rfc7296

Stephen Kent. 2005. Extended Sequence Number (ESN) Addendum to IPsec Domain
of Interpretation (DOI) for Internet Security Association and Key Management
Protocol (ISAKMP). RFC 4304. https://doi.org/10.17487/rfc4304

Stephen Kent. 2005. IP Authentication Header. RFC 4302. https://doi.org/10.
17487/rfc4302

Stephen Kent. 2005. IP Encapsulating Security Payload (ESP). RFC 4303. https:
//doi.org/10.17487/rfc4303

Stephen Kent and Karen Seo. 2005. Security Architecture for the Internet Protocol.
RFC 4301. https://doi.org/10.17487/rfc4301

David A. McGrew and Brian Weis. 2010. Using Counter Modes with Encapsulating
Security Payload (ESP) and Authentication Header (AH) to Protect Group Traffic.
RFC 6054. https://doi.org/10.17487/rfc6054

Jinli Meng, Xinming Chen, Zhen Chen, Chuang Lin, Beipeng Mu, and Lingyun
Ruan. 2010. Towards High-Performance IPsec on Cavium OCTEON Platform.
In INTRUST 2010: International Conference on Trusted Systems. 37-46. https:
//doi.org/10.1007/978-3-642-25283-9_3

Microsoft. 2018. Secure Socket Tunneling Protocol (SSTP). https:
//docs.microsoft.com/en-us/openspecs/windows_protocols/ms-sstp/c50ed240-
56£3-4309-8e0c-1644898f0ea8

Daniel Migault, Tobias Guggemos, and Yoav Nir. 2019. Implicit IV for Counter-
based Ciphers in Encapsulating Security Payload (ESP). Internet-Draft draft-ietf-
ipsecme-implicit-iv-11. https://tools.ietf.org/html/draft-ietf-ipsecme-implicit-
iv-11

Yoav Nir. 2015. ChaCha20, Poly1305, and Their Use in the Internet Key Exchange
Protocol (IKE) and IPsec. RFC 7634. https://doi.org/10.17487/rfc7634

Kenneth G. Paterson and Arnold K.L. Yau. 2006. Cryptography in Theory and
Practice: The Case of Encryption in IPsec. In Advances in Cryptology - EURO-
CRYPT 2006, Serge Vaudenay (Ed.). 12-29. https://doi.org/10.1007/11761679_2
Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446. https://doi.org/10.17487/rfc8446

John Viega and David A. McGrew. 2005. The Use of Galois/Counter Mode in IPsec
Encapsulating Security Payload. RFC 4106. https://doi.org/10.17487/rfc4106
Mao-Yin Wang and Cheng-Wen Wu. 2010. A Mesh-Structured Scalable IPsec
Processor. 18, 5 (05 2010), 725-731. https://doi.org/10.1109/TVLSIL.2009.2016102
Brian Weis, Sheela Rowles, and Thomas Hardjono. 2011. The Group Domain of
Interpretation. RFC 6407. https://doi.org/10.17487/rfc6407

Paul Wouters, Daniel Migault, John Mattsson, Yoav Nir, and Tero Kivinen. 2017.
Cryptographic Algorithm Implementation Requirements and Usage Guidance for
Encapsulating Security Payload (ESP) and Authentication Header (AH). RFC 8221.
https://doi.org/10.17487/rfc8221

Tatu Ylonen and Chris Lonvick. 2006. The Secure Shell (SSH) Protocol Architecture.
RFC 4251. https://doi.org/10.17487/rfc4251

https://doi.org/10.1109/ANCS.2015.7110116
https://www.ndss-symposium.org/wp-content/uploads/2017/09/ndss2017_04A-3_Donenfeld_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/ndss2017_04A-3_Donenfeld_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/ndss2017_04A-3_Donenfeld_paper.pdf
https://doi.org/10.1117/12.630496
https://doi.org/10.1109/IEEESTD.2018.8585421
https://doi.org/10.1109/IEEESTD.2018.8585421
https://doi.org/10.17487/rfc1829
https://doi.org/10.17487/rfc7296
https://doi.org/10.17487/rfc7296
https://doi.org/10.17487/rfc4304
https://doi.org/10.17487/rfc4302
https://doi.org/10.17487/rfc4302
https://doi.org/10.17487/rfc4303
https://doi.org/10.17487/rfc4303
https://doi.org/10.17487/rfc4301
https://doi.org/10.17487/rfc6054
https://doi.org/10.1007/978-3-642-25283-9_3
https://doi.org/10.1007/978-3-642-25283-9_3
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-sstp/c50ed240-56f3-4309-8e0c-1644898f0ea8
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-sstp/c50ed240-56f3-4309-8e0c-1644898f0ea8
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-sstp/c50ed240-56f3-4309-8e0c-1644898f0ea8
https://tools.ietf.org/html/draft-ietf-ipsecme-implicit-iv-11
https://tools.ietf.org/html/draft-ietf-ipsecme-implicit-iv-11
https://doi.org/10.17487/rfc7634
https://doi.org/10.1007/11761679_2
https://doi.org/10.17487/rfc8446
https://doi.org/10.17487/rfc4106
https://doi.org/10.1109/TVLSI.2009.2016102
https://doi.org/10.17487/rfc6407
https://doi.org/10.17487/rfc8221
https://doi.org/10.17487/rfc4251

	Abstract
	1 Introduction
	2 Objectives
	3 Shortcomings of ESP
	3.1 Hardware Parallelism
	3.2 Modern Processor & NIC Features
	3.3 Evolving Use Cases
	3.4 Summary

	4 Proposed Changes to Protocol Header and Handling
	4.1 Replay Windows and Sequence Numbers
	4.2 Initialization Vectors
	4.3 Reducing Complexity & Providing Alignment
	4.4 Resulting Packet Layout

	5 Evaluation
	5.1 Security Discussion
	5.2 Implementation & Experimental Setup
	5.3 Non-Parallel Throughput
	5.4 Scalability
	5.5 Hardware Architecture Optimizations

	6 Related Work
	7 Conclusion & Future Work
	Acknowledgments
	References

