
ABOUT THE CHALLENGES OF RUNNING
SOFTWARE-DEFINED ESP IN DATA CENTERS

Michael Pfeiffer • Michael Rossberg

Motivation
• ESP + IKE:

• The standard for network layer VPNs
• Around for two decades, proven in theory and practice

• But:
• Data rates evolved significantly

• Fast Ethernet (1995) → 100/200 GbE
• IPsec’s use cases evolved significantly

• Scaling data-centers (switched → routed networks) & “Zero-trust”
• Necessary: Multicast (VXLAN!), QoS, Jumbo frames

• Hardware evolved significantly
• CPUs: Multicore & SIMD
• NICs: Multi-Queueing, Receive-Side Scaling
• ASICs: Increased Parallelism

Introduction
2

ESP & Hardware Parallelism
• Scenario: High traffic SA between two VPN gateways (> 10 Gbit/s)

• Must use multiple cores / queues, but:
• Cannot synchronize sequence counters and replay windows fast enough
• Even without replay protection: No field for decrypting gateway to RSS upon → reordering

disturbs TCP et al.

• Only possibility: Multiple SAs between two gateways, but:
• Data plane properties (e.g. number of cores) pushed into control plane

→ Multiple IKE exchanges & DPD
• Complicates configuration and monitoring
• Problems gets worse with multicast and QoS (hang on…)

→ ESP should support parallel processing by design

Shortcomings of current ESP
3

ESP & Modern Hardware Features
• Alignment:

• ESP header 4 or 8 byte aligned; ESP ICV 4 byte aligned
• Modern SIMD instructions like more (SSE/Neon: 16 byte, AVX: 32 byte)
• Header alignment can be influenced in implementations by manipulating headroom in packet

buffers
• But: Trailer position depends on packet length

• Jumbo frames & Fragmentation:
• NICs place them into multiple (chained) packet buffers
• Trailer may end up split among two segments
• Costly copy operation required to restore

• AES-NI et. al. aggravate problems in complex packet handling:
• Focus shifts from actual crypto to packet handling

→ ESP’s header/trailer structure hinders high-performance implementations

Shortcomings of current ESP
4

ESP & Local Area Networks
• Multicast (with multiple senders):

• Replay protection does not work (sequence number synchronization)
• 1 SA per sender? → „1 affects n“ scalability issue
• ESNs transmit only least-significant 32 bit → Problem for receivers joining late
• No built-in mechanism to avoid IV reusage (fatal in GCM)

• QoS:
• QoS flags can be copied to outer header
• But: Prioritized traffic leads to windows advancing before low-priority traffic arrives
• Huge replay windows? → Performance issues
• 1 SA per QoS class → See parallelism, multiplicates number of SAs!

→ ESP makes Multicast and QoS hard to use

Shortcomings of current ESP
5

Proposed Protocol Changes
• General approach:

• Change ESP as little as possible
→ Keep existing security properties

• IKEv2 not changed
• Assume a modern AEAD cipher,

i.e. AES-GCM → Conforms to RFC 8221

• Changes in:
• Replay Protection
• IVs
• Trailer

• Working title: VPE
• Vector Packet Encapsulation
• Subject to debate ;-)
• For today: Focus on tunnel mode

Proposed Protocol Changes
6

Security Parameter Index (SPI)
Sequence Number

Initialization Vector

Encapsulated Packet

Padding (0-3 byte) Pad. Len. Next Hdr.

Integrity Check Value (ICV)

Current ESP packet format (AES-GCM):

Auth.
Auth. & Enc.

Replay Protection
• Central idea: 1:N mapping between SA and replay windows

• Unicast:
• Window ID (16 bit) allows steering traffic to distinct replay windows within a single SA
• Simple case: Encrypting gateway inserts CPU core ID, receiving gateway performs

RSS/Flow Steering based on Window ID
• No need to coordinate number of cores between sender and receiver, but receivers must be

able to track more than one replay window per core
• Sequence counter/replay windows can reside in core-local memory → Solves parallelism
• Some Window ID bits can be used for traffic classes → Solves QoS

• Multicast (with group key):
• Sender ID (16 bit) unique to each sender (obtained from, e.g., certificate)
• Replay window per (Sender ID, Window ID)
• Distinct senders can increment their sequence numbers without coordination
• Can be combined with parallelism and QoS

Proposed Protocol Changes
7

Replay Protection
• Keep protocol complexity low:

• SenderID set to fixed value for unicast SAs
• Implementations can always use (Sender ID, Window ID) as 32 bit lookup key

• RSS for encrypted traffic
• Steer traffic based on (Sender ID, Window ID)
• No need to perform RSS on SPI anymore

• Sequence Numbering:
• Full ESN transmitted in each packet

Proposed Protocol Changes
8

Initialization Vectors
• For a given SA:

• IVs must not repeat
• Synchronizing IVs across cores is too costly (just as sequence numbers)
• Distinct number spaces for each core and sender (multicast)

• Approach:
• Use (SenderID, WindowID, ESN) as IV (96 bit)
• In spirit of RFC 8750 and IEEE 802.1AE
• Unique by design
• No salt used anymore (no need for IVs to be secret or random)

• Place ESN directly after (SenderID, WindowID):
• Reading 12 bytes from the beginning of sender SenderID returns IV

Proposed Protocol Changes
9

Trailer
• Padding:

• Modern AEAD ciphers do not require padding
• Proposal: Drop explicit padding entirely
• Implicit padding still possible in tunnel mode (IP header contains length) → No impact on

traffic flow confidentiality

• Next header field:
• Superfluous in tunnel mode (v4/v6 discernible by first nibble)
• Proposal: Drop next header
• Transport mode would require different approach here… (not covered in this talk)

• Integrity Check Value:
• Moved to header → No danger of being placed in two segment buffers
• Aligned to 16 byte (respective to the start of the header) → Independent from packet length

→ Trailer can be dropped entirely

Proposed Protocol Changes
10

Resulting Packet Layout

Proposed Protocol Changes
11

Security Parameter Index (SPI)
Sequence Number

Initialization Vector

Encapsulated Packet

Padding (0-3 byte) Pad. Len. Next Hdr.

Integrity Check Value (ICV)

Current ESP packet format (AES-GCM)

Au
th

.
Au

th
. &

 E
nc

.
Security Parameter Index (SPI)

Sender ID Window ID

Sequence Number

Integrity Check Value (ICV)

Encapsulated Packet

VPE packet format

U
sed

as
IV

Auth. & Enc.

Resulting Packet Layout
• No need to authenticate

• Sender ID, Window ID, or Sequence Number
→ Modification changes IV → ICV mismatch

• SPI → Modification routes packet to wrong
or invalid cryptographic context

• ICV → Modification causes ICV mismatch
(obviously)

→ No AAD required

Proposed Protocol Changes
12

Security Parameter Index (SPI)
Sender ID Window ID

Sequence Number

Integrity Check Value (ICV)

Encapsulated Packet

VPE packet format

U
sed as IV

Auth. & Enc.

Evaluation
• Security discussion:

• Entire encapsulated packet still covered by AEAD
• Authentication of SPI & sequence number not required
• TFC may require regular RSS rekeying (if TFC padding not used)
• Improved security due to replay protection in multicast environments & IV reuse less likely

• Implementation Prototype:
• Highly optimized C++ application
• DPDK for NIC access
• intel-ipsec-mb for vectorized crypto
• Tons of template inlining and intrinsics for speed ;-)
• Three modes:

• Simple & non-parallel ESP
• Quite complex, but parallel ESP
• Simple & parallel VPE

Evaluation
13

Performance Evaluation
• Testbed consisting of 4 boxes:

• Traffic Generator/Receiver
• Gateway 1
• Gateway 2
• Traffic Reflector

• Decent, but general-purpose hardware:
• Two-Socket Broadwell Xeons
• Connect-X4/X5 NICs

• Measured throughput at receiver:
→ Without crypto headers (ESP, Outer IP)
→ Gateway handles same throughput in
opposite direction!

• Baseline: DPDK’s ipsec-secgw

Evaluation
14

L2

Kernel
Space

Hardware

Connect-X5

User Space

HEAT

DPDK

Port 1 Port 2

DMADMA

L1

Kernel
Space

Hardware

Connect-X4

User Space

Traffic Generator

DPDK

Port 1 Port 2

DMA

L4

Kernel
Space

Hardware

Connect-X4

User Space

Traffic Reflector

DPDK

Port 1 Port 2

DMA

L3

Kernel
Space

Hardware

Connect-X5

User Space

HEAT

DPDK

Port 1 Port 2

DMADMA

Single-Core Throughput

Evaluation
15

Multi-Core Throughput

Evaluation
16

Conclusion
• Wrap-up: Presented VPE as modern companion to ESP with

• N replay windows per SA to simplify
• parallel processing,
• multicast, and
• QoS

• Getting rid of the trailer makes software implementations faster/simpler
• Implicit IVs to reduce risk of inadvertent reusage

• There will be paper with more details at this year’s ARES conference
• On https://www.tu-ilmenau.de/telematik/mitarbeiter/michael-rossberg/ once published
• Or just email us for a preprint ;-)
• Note: It describes a previous version of the protocol with the SPI after the sequence number

• Questions, comments, or angry rants?
• michael.rossberg@tu-ilmenau.de
• michael.pfeiffer@tu-ilmenau.de

Conclusion
17

https://www.tu-ilmenau.de/telematik/mitarbeiter/michael-rossberg/
http://tu-ilmenau.de
http://tu-ilmenau.de

ABOUT THE CHALLENGES OF RUNNING
SOFTWARE-DEFINED ESP IN DATA CENTERS

Michael Pfeiffer • Michael Rossberg

Parallel ESP processing: Threading model
IPsec en-/decryption

Red RX
threads

Single
SeqNo thread

Encryption
threads

Decryption
threads

Single
RSS thread

Red TX
threads

“Red” interface

RX queues

TX queues

“Black” interface

TX queues

RX queue

Backup Slides
19

Encryption Time vs. Packet Size

Backup Slides
20

Encryption Time vs. Additional Headroom

Backup Slides
21

7
7.25

7.5
7.75

8
8.25

8.5
8.75

9
9.25

9.5
9.75

10
10.25

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
Extra Headroom [Bytes]

Ti
m

e
to

 e
nc

ry
pt

 1
0⁷

 p
ac

ke
ts

 [s
] FastESP

ESP

