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Motivation
• ESP + IKE:

• The standard for network layer VPNs
• Around for two decades, proven in theory and practice

• But: 
• Data rates evolved significantly

• Fast Ethernet (1995) → 100/200 GbE
• IPsec’s use cases evolved significantly

• Scaling data-centers (switched → routed networks) & “Zero-trust”
• Necessary: Multicast (VXLAN!), QoS, Jumbo frames

• Hardware evolved significantly
• CPUs: Multicore & SIMD
• NICs: Multi-Queueing, Receive-Side Scaling
• ASICs: Increased Parallelism

Introduction
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ESP & Hardware Parallelism
• Scenario: High traffic SA between two VPN gateways (> 10 Gbit/s)

• Must use multiple cores / queues, but:
• Cannot synchronize sequence counters and replay windows fast enough
• Even without replay protection: No field for decrypting gateway to RSS upon → reordering 

disturbs TCP et al.

• Only possibility: Multiple SAs between two gateways, but:
• Data plane properties (e.g. number of cores) pushed into control plane

→ Multiple IKE exchanges & DPD
• Complicates configuration and monitoring
• Problems gets worse with multicast and QoS (hang on…)

→ ESP should support parallel processing by design

Shortcomings of current ESP
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ESP & Modern Hardware Features
• Alignment:

• ESP header 4 or 8 byte aligned; ESP ICV 4 byte aligned
• Modern SIMD instructions like more (SSE/Neon: 16 byte, AVX: 32 byte)
• Header alignment can be influenced in implementations by manipulating headroom in packet 

buffers
• But: Trailer position depends on packet length

• Jumbo frames & Fragmentation:
• NICs place them into multiple (chained) packet buffers
• Trailer may end up split among two segments
• Costly copy operation required to restore

• AES-NI et. al. aggravate problems in complex packet handling:
• Focus shifts from actual crypto to packet handling

→ ESP’s header/trailer structure hinders high-performance implementations

Shortcomings of current ESP
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ESP & Local Area Networks
• Multicast (with multiple senders):

• Replay protection does not work (sequence number synchronization)
• 1 SA per sender? → „1 affects n“ scalability issue
• ESNs transmit only least-significant 32 bit → Problem for receivers joining late
• No built-in mechanism to avoid IV reusage (fatal in GCM)

• QoS:
• QoS flags can be copied to outer header
• But: Prioritized traffic leads to windows advancing before low-priority traffic arrives
• Huge replay windows? → Performance issues
• 1 SA per QoS class → See parallelism, multiplicates number of SAs!

→ ESP makes Multicast and QoS hard to use

Shortcomings of current ESP
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Proposed Protocol Changes
• General approach:

• Change ESP as little as possible
→ Keep existing security properties

• IKEv2 not changed
• Assume a modern AEAD cipher,

i.e. AES-GCM → Conforms to RFC 8221

• Changes in:
• Replay Protection
• IVs
• Trailer

• Working title: VPE
• Vector Packet Encapsulation
• Subject to debate ;-)
• For today: Focus on tunnel mode

Proposed Protocol Changes
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Replay Protection
• Central idea: 1:N mapping between SA and replay windows

• Unicast:
• Window ID (16 bit) allows steering traffic to distinct replay windows within a single SA
• Simple case: Encrypting gateway inserts CPU core ID, receiving gateway performs 

RSS/Flow Steering based on Window ID
• No need to coordinate number of cores between sender and receiver, but receivers must be 

able to track more than one replay window per core
• Sequence counter/replay windows can reside in core-local memory → Solves parallelism
• Some Window ID bits can be used for traffic classes → Solves QoS

• Multicast (with group key):
• Sender ID (16 bit) unique to each sender (obtained from, e.g., certificate)
• Replay window per (Sender ID, Window ID)
• Distinct senders can increment their sequence numbers without coordination
• Can be combined with parallelism and QoS

Proposed Protocol Changes
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Replay Protection
• Keep protocol complexity low:

• SenderID set to fixed value for unicast SAs
• Implementations can always use (Sender ID, Window ID) as 32 bit lookup key

• RSS for encrypted traffic
• Steer traffic based on (Sender ID, Window ID)
• No need to perform RSS on SPI anymore

• Sequence Numbering:
• Full ESN transmitted in each packet

Proposed Protocol Changes
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Initialization Vectors
• For a given SA:

• IVs must not repeat
• Synchronizing IVs across cores is too costly (just as sequence numbers)
• Distinct number spaces for each core and sender (multicast)

• Approach:
• Use (SenderID, WindowID, ESN) as IV (96 bit)
• In spirit of RFC 8750 and IEEE 802.1AE
• Unique by design
• No salt used anymore (no need for IVs to be secret or random)

• Place ESN directly after (SenderID, WindowID):
• Reading 12 bytes from the beginning of sender SenderID returns IV

Proposed Protocol Changes
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Trailer
• Padding:

• Modern AEAD ciphers do not require padding
• Proposal: Drop explicit padding entirely
• Implicit padding still possible in tunnel mode (IP header contains length) → No impact on 

traffic flow confidentiality 

• Next header field:
• Superfluous in tunnel mode (v4/v6 discernible by first nibble)
• Proposal: Drop next header
• Transport mode would require different approach here… (not covered in this talk)

• Integrity Check Value:
• Moved to header → No danger of being placed in two segment buffers
• Aligned to 16 byte (respective to the start of the header) → Independent from packet length

→ Trailer can be dropped entirely

Proposed Protocol Changes
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Resulting Packet Layout

Proposed Protocol Changes
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Resulting Packet Layout
• No need to authenticate

• Sender ID, Window ID, or Sequence Number 
→ Modification changes IV → ICV mismatch

• SPI → Modification routes packet to wrong 
or invalid cryptographic context

• ICV →  Modification causes ICV mismatch 
(obviously)

→ No AAD required

Proposed Protocol Changes
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Evaluation
• Security discussion:

• Entire encapsulated packet still covered by AEAD
• Authentication of SPI & sequence number not required
• TFC may require regular RSS rekeying (if TFC padding not used)
• Improved security due to replay protection in multicast environments & IV reuse less likely

• Implementation Prototype:
• Highly optimized C++ application
• DPDK for NIC access
• intel-ipsec-mb for vectorized crypto
• Tons of template inlining and intrinsics for speed ;-)
• Three modes:

• Simple & non-parallel ESP
• Quite complex, but parallel ESP
• Simple & parallel VPE

Evaluation
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Performance Evaluation
• Testbed consisting of 4 boxes:

• Traffic Generator/Receiver
• Gateway 1
• Gateway 2
• Traffic Reflector

• Decent, but general-purpose hardware:
• Two-Socket Broadwell Xeons
• Connect-X4/X5 NICs

• Measured throughput at receiver:
→ Without crypto headers (ESP, Outer IP)
→ Gateway handles same throughput in 
opposite direction!

• Baseline: DPDK’s ipsec-secgw

Evaluation
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Single-Core Throughput

Evaluation
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Multi-Core Throughput

Evaluation
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Conclusion
• Wrap-up: Presented VPE as modern companion to ESP with

• N replay windows per SA to simplify
• parallel processing,
• multicast, and
• QoS

• Getting rid of the trailer makes software implementations faster/simpler
• Implicit IVs to reduce risk of inadvertent reusage

• There will be paper with more details at this year’s ARES conference
• On https://www.tu-ilmenau.de/telematik/mitarbeiter/michael-rossberg/ once published
• Or just email us for a preprint ;-)
• Note: It describes a previous version of the protocol with the SPI after the sequence number

• Questions, comments, or angry rants?
• michael.rossberg@tu-ilmenau.de
• michael.pfeiffer@tu-ilmenau.de

Conclusion
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Parallel ESP processing: Threading model
IPsec en-/decryption

Red RX 
threads

Single
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threads

Decryption 
threads
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Red TX 
threads
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Backup Slides
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Encryption Time vs. Packet Size

Backup Slides
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Encryption Time vs. Additional Headroom

Backup Slides
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