

ABOUT THE CHALLENGES OF RUNNING SOFTWARE-DEFINED ESP IN DATA CENTERS

Michael Pfeiffer • Michael Rossberg

Motivation

- ESP + IKE:
 - The standard for network layer VPNs
 - Around for two decades, proven in theory and practice
- But:
 - Data rates evolved significantly
 - Fast Ethernet (1995) \rightarrow 100/200 GbE
 - IPsec's use cases evolved significantly
 - Scaling data-centers (switched → routed networks) & "Zero-trust"
 - Necessary: Multicast (VXLAN!), QoS, Jumbo frames
 - Hardware evolved significantly
 - CPUs: Multicore & SIMD
 - NICs: Multi-Queueing, Receive-Side Scaling
 - ASICs: Increased Parallelism

ESP & Hardware Parallelism

- Scenario: High traffic SA between two VPN gateways (> 10 Gbit/s)
- Must use multiple cores / queues, but:
 - Cannot synchronize sequence counters and replay windows fast enough
 - Even without replay protection: No field for decrypting gateway to RSS upon → reordering disturbs TCP et al.
- Only possibility: Multiple SAs between two gateways, but:
 - Data plane properties (e.g. number of cores) pushed into control plane
 → Multiple IKE exchanges & DPD
 - Complicates configuration and monitoring
 - Problems gets worse with multicast and QoS (hang on...)
- \rightarrow ESP should support parallel processing by design

ESP & Modern Hardware Features

- Alignment:
 - ESP header 4 or 8 byte aligned; ESP ICV 4 byte aligned
 - Modern SIMD instructions like more (SSE/Neon: 16 byte, AVX: 32 byte)
 - Header alignment can be influenced in implementations by manipulating headroom in packet buffers
 - But: Trailer position depends on packet length
- Jumbo frames & Fragmentation:
 - NICs place them into multiple (chained) packet buffers
 - Trailer may end up split among two segments
 - Costly copy operation required to restore
- AES-NI et. al. aggravate problems in complex packet handling:
 - Focus shifts from actual crypto to packet handling
- \rightarrow ESP's header/trailer structure hinders high-performance implementations

ESP & Local Area Networks

- Multicast (with multiple senders):
 - Replay protection does not work (sequence number synchronization)
 - 1 SA per sender? \rightarrow "1 affects n" scalability issue
 - ESNs transmit only least-significant 32 bit \rightarrow Problem for receivers joining late
 - No built-in mechanism to avoid IV reusage (fatal in GCM)

• QoS:

- QoS flags can be copied to outer header
- But: Prioritized traffic leads to windows advancing before low-priority traffic arrives
- Huge replay windows? \rightarrow Performance issues
- 1 SA per QoS class \rightarrow See parallelism, multiplicates number of SAs!

\rightarrow ESP makes Multicast and QoS hard to use

Proposed Protocol Changes

- General approach:
 - Change ESP as little as possible \rightarrow Keep existing security properties
 - IKEv2 not changed
 - Assume a modern AEAD cipher, i.e. AES-GCM \rightarrow Conforms to RFC 8221
- Changes in:
 - **Replay Protection**
 - IVs
 - Trailer
- Working title: VPE
 - Vector Packet Encapsulation
 - Subject to debate ;-)
 - For today: Focus on tunnel mode

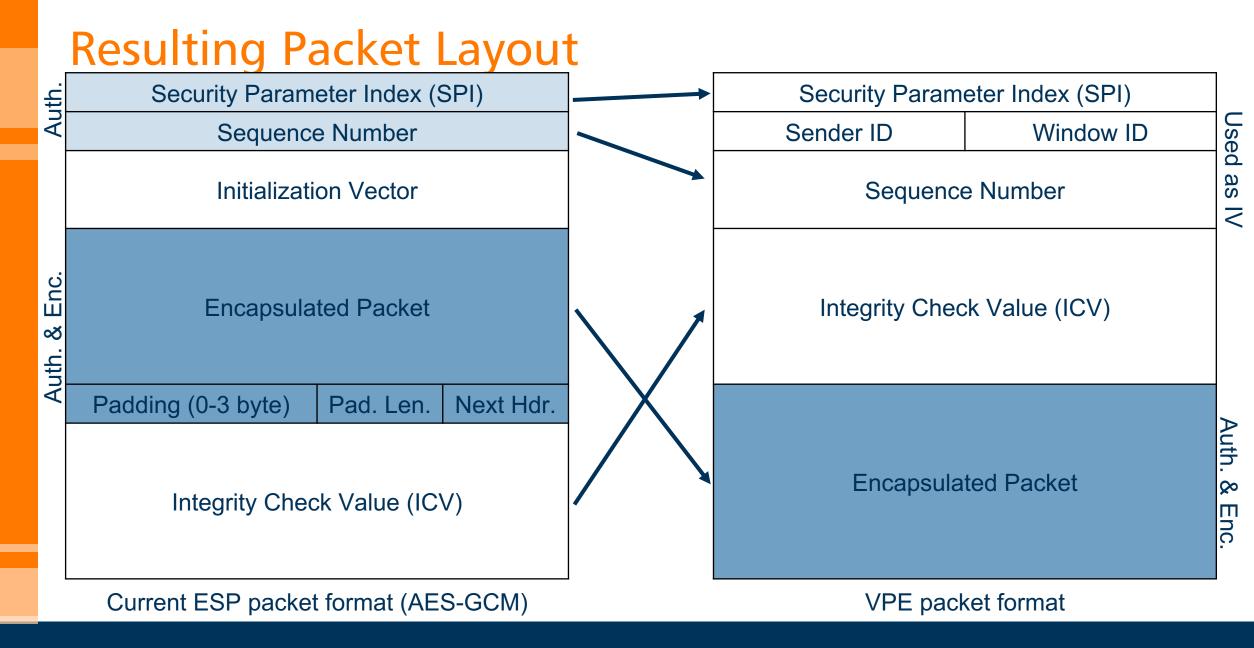
Current ESP packet format (AES-GCM):			
Security Parameter Index (SPI)			AL
Sequence Number			Auth.
Initialization Vector			
Encapsulated Packet			Auth. & Enc.
Padding (0-3 byte)	Pad. Len.	Next Hdr.	0
Integrity Check Value (ICV)			

Replay Protection

- Central idea: 1:N mapping between SA and replay windows
- Unicast:
 - Window ID (16 bit) allows steering traffic to distinct replay windows within a single SA
 - Simple case: Encrypting gateway inserts CPU core ID, receiving gateway performs RSS/Flow Steering based on Window ID
 - No need to coordinate number of cores between sender and receiver, but receivers must be able to track more than one replay window per core
 - Sequence counter/replay windows can reside in core-local memory \rightarrow Solves parallelism
 - Some Window ID bits can be used for traffic classes \rightarrow Solves QoS
- Multicast (with group key):
 - Sender ID (16 bit) unique to each sender (obtained from, e.g., certificate)
 - Replay window per (Sender ID, Window ID)
 - Distinct senders can increment their sequence numbers without coordination
 - Can be combined with parallelism and QoS

Replay Protection

- Keep protocol complexity low:
 - SenderID set to fixed value for unicast SAs
 - Implementations can always use (Sender ID, Window ID) as 32 bit lookup key
- RSS for encrypted traffic
 - Steer traffic based on (Sender ID, Window ID)
 - No need to perform RSS on SPI anymore
- Sequence Numbering:
 - Full ESN transmitted in each packet


Initialization Vectors

- For a given SA:
 - IVs must not repeat
 - Synchronizing IVs across cores is too costly (just as sequence numbers)
 - Distinct number spaces for each core and sender (multicast)
- Approach:
 - Use (SenderID, WindowID, ESN) as IV (96 bit)
 - In spirit of RFC 8750 and IEEE 802.1AE
 - Unique by design
 - No salt used anymore (no need for IVs to be secret or random)
- Place ESN directly after (SenderID, WindowID):
 - Reading 12 bytes from the beginning of sender SenderID returns IV

Trailer

- Padding:
 - Modern AEAD ciphers do not require padding
 - Proposal: Drop explicit padding entirely
 - Implicit padding still possible in tunnel mode (IP header contains length) → No impact on traffic flow confidentiality
- Next header field:
 - Superfluous in tunnel mode (v4/v6 discernible by first nibble)
 - Proposal: Drop next header
 - Transport mode would require different approach here... (not covered in this talk)
- Integrity Check Value:
 - Moved to header \rightarrow No danger of being placed in two segment buffers
 - Aligned to 16 byte (respective to the start of the header) \rightarrow Independent from packet length
- \rightarrow Trailer can be dropped entirely

Resulting Packet Layout

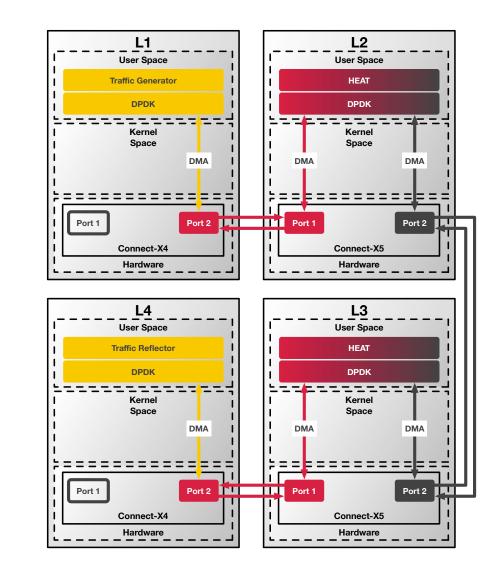
- No need to authenticate
 - Sender ID, Window ID, or Sequence Number
 → Modification changes IV → ICV mismatch
 - SPI → Modification routes packet to wrong or invalid cryptographic context
 - ICV → Modification causes ICV mismatch (obviously)
- \rightarrow No AAD required

		_
Security Parameter Index (SPI)		
Sender ID	Window ID	Used
Sequence Number		
Integrity Check Value (ICV)		
Encapsulated Packet		Auth. & Enc.

VPE packet format

Evaluation

- Security discussion:
 - Entire encapsulated packet still covered by AEAD
 - Authentication of SPI & sequence number not required
 - TFC may require regular RSS rekeying (if TFC padding not used)
 - Improved security due to replay protection in multicast environments & IV reuse less likely


• Implementation Prototype:

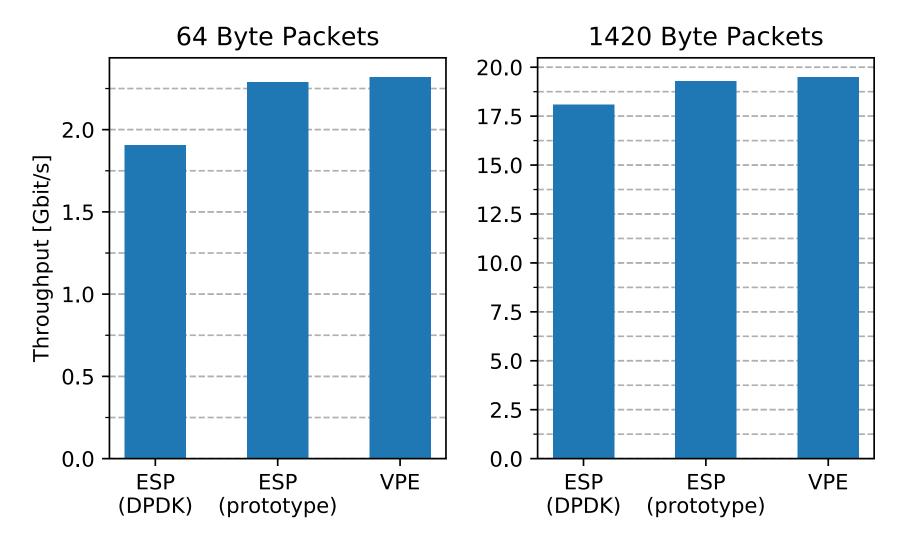
- Highly optimized C++ application
- DPDK for NIC access
- intel-ipsec-mb for vectorized crypto
- Tons of template inlining and intrinsics for speed ;-)
- Three modes:
 - Simple & non-parallel ESP
 - Quite complex, but parallel ESP
 - Simple & parallel VPE

Performance Evaluation

- Testbed consisting of 4 boxes:
 - Traffic Generator/Receiver
 - Gateway 1
 - Gateway 2
 - Traffic Reflector
- Decent, but general-purpose hardware:
 - Two-Socket Broadwell Xeons
 - Connect-X4/X5 NICs
- Measured throughput at receiver:
 - \rightarrow Without crypto headers (ESP, Outer IP) \rightarrow Gateway handles same throughput in opposite direction!
- Baseline: DPDK's ipsec-secgw

The SPIRIT

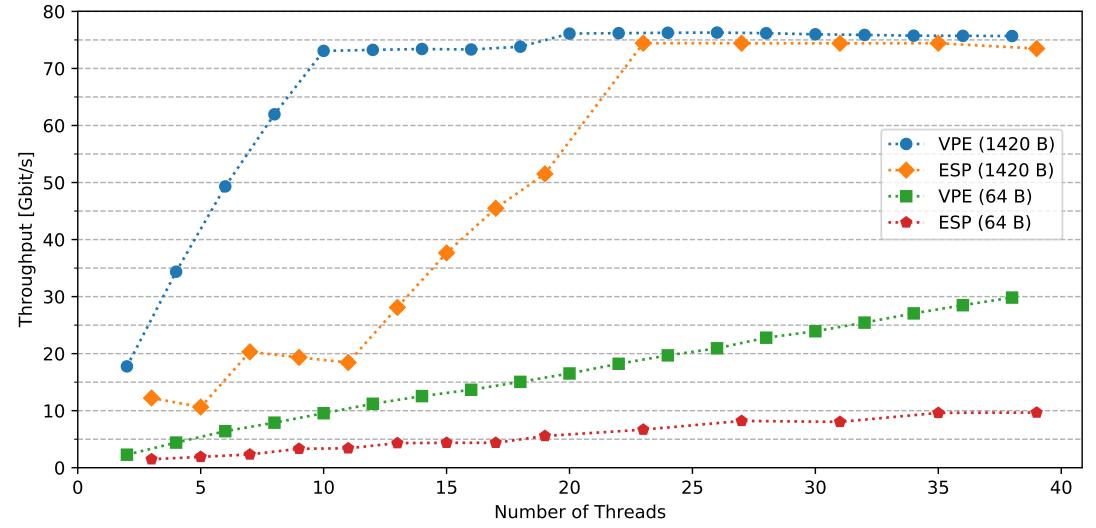
of science


th.

ILMENAU

14

TECHNISCHE UNIVERSITAT

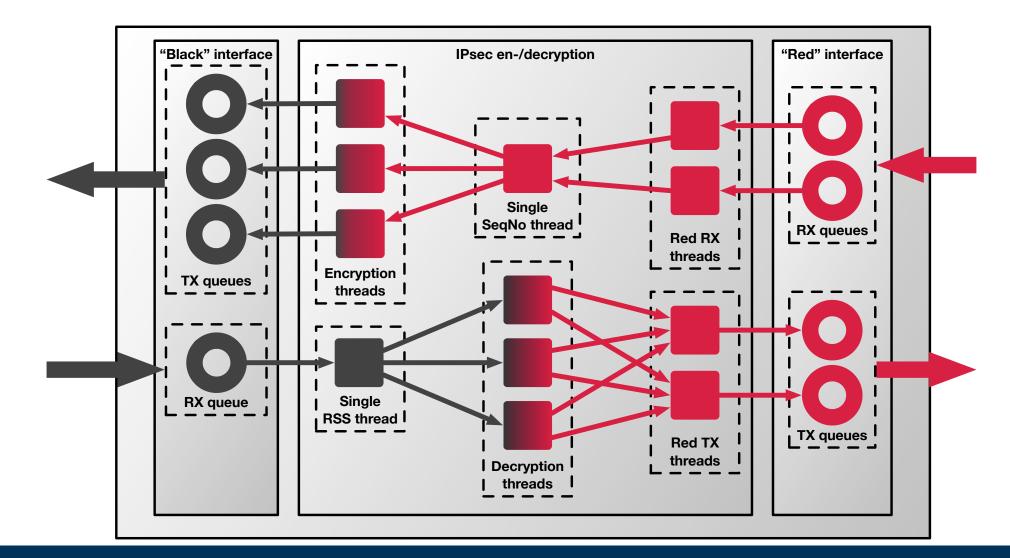

Single-Core Throughput

Evaluation

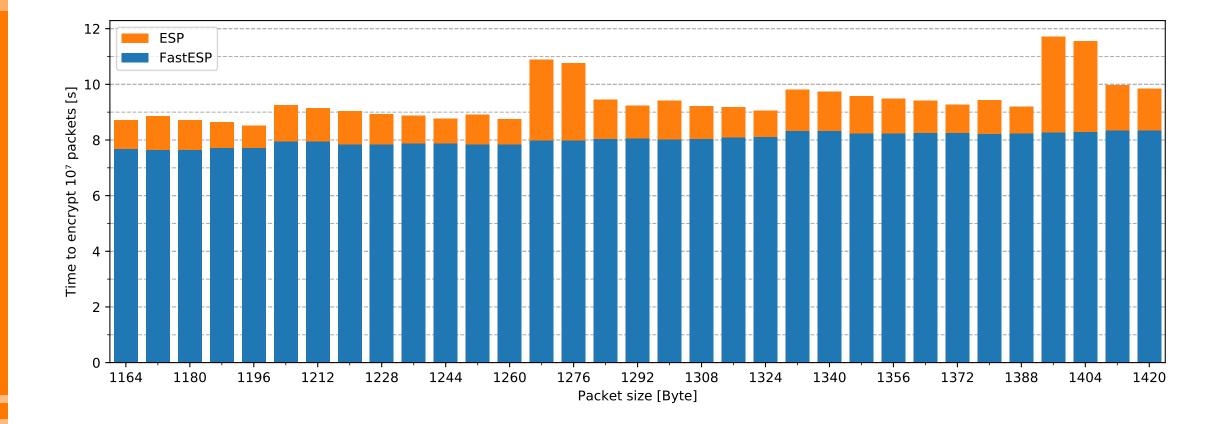
Multi-Core Throughput

Conclusion

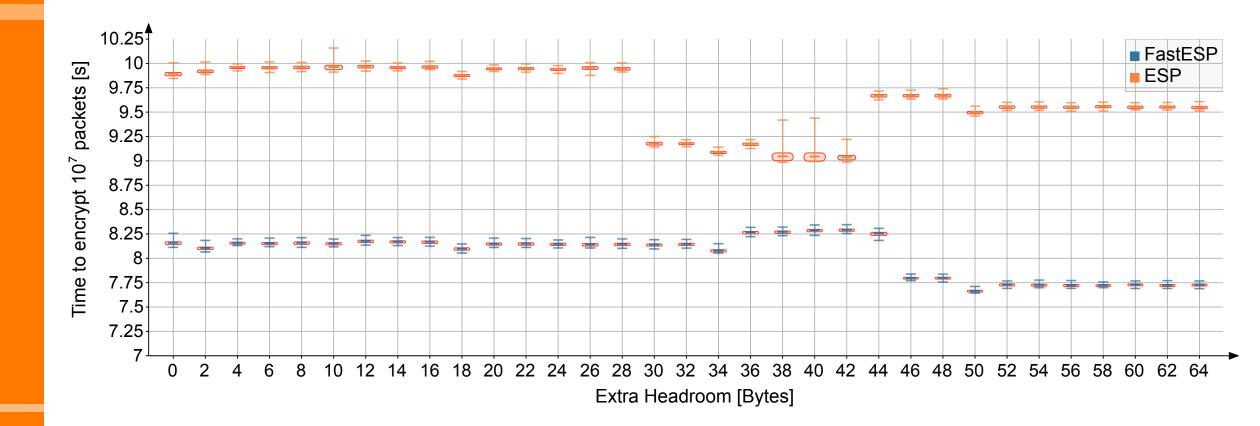
- Wrap-up: Presented VPE as modern companion to ESP with
 - N replay windows per SA to simplify
 - parallel processing,
 - multicast, and
 - QoS
 - Getting rid of the trailer makes software implementations faster/simpler
 - Implicit IVs to reduce risk of inadvertent reusage
- There will be paper with more details at this year's ARES conference
 - On https://www.tu-ilmenau.de/telematik/mitarbeiter/michael-rossberg/ once published
 - Or just email us for a preprint ;-)
 - Note: It describes a previous version of the protocol with the SPI after the sequence number
- Questions, comments, or angry rants?
 - <u>michael.rossberg@tu-ilmenau.de</u>
 - <u>michael.pfeiffer@tu-ilmenau.de</u>



ABOUT THE CHALLENGES OF RUNNING SOFTWARE-DEFINED ESP IN DATA CENTERS


Michael Pfeiffer • Michael Rossberg

Parallel ESP processing: Threading model



Encryption Time vs. Packet Size

Encryption Time vs. Additional Headroom

